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Abstract. We study a random resistors network model on a Euclidean geonftry We
formulate the model in terms of a variational principle and show that, under appropriate boundary
conditions, the thermodynamic limit of the dissipation per unit volume is finite almost surely
and in the mean. Moreover, we show that for a particular thermodynamic limit the result is also
independent of the boundary conditions.

1. Introduction

In this paper we study a model of random resistors networks (RRN) on a Euclidean geometry
Z¢. RRN are examples of disordered statistical mechanical systems which have been widely
considered in the literature in the context of percolation theory [1], with different lattice
geometries and different probability distributions for the resistors [2—6].

The problem we address is the behaviour of the RRN model in the thermodynamic limit,
concentrating in particular on the role of the boundary conditions. We shall restrict ourselves
to the case in which the resistors are independent and identically distributed positive random
variables. We do not specify any distribution function but assume it to be smooth enough to
have a finite expectation value. The physical observable we consider is the dissipation per
unit volume, which is related to the total conductance of the network (cf (14)). We show
that, under appropriate boundary conditions (which we cklked boundary conditions
(CBC) and will be specified in section 2), the thermodynamic limit of the dissipation is
finite, both in the mean and almost surely. More precisely, the main results of this paper
are summarized by the following theorem.

Theorem 1.1If the conductances of the network have a finite expectation v@yethen
the limit of the dissipation per unit volum& 8¢/ L A on a rectangul4rRRN of dimensions
(L, A),

CBC

lim —EA — y3cCBC (1)
L,A—»oco LA

exists in the mean and almost surely and is finite, independently of the order of the limits
on L and A, whereuyg is a real positive number,
. E(WSBC
jim  ZWiaD)

U(Z)ECBC —
L,A—0o0 LA

2

1 E-mail address: guerra@romal.infn.it
1 E-mail address: talevi@romal.infn.it
§ We consider the case df= 2, being the extension to the case of an arbitratyivial.
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and CBC denotes closed boundary conditions. Moreover, if we let co before. — oo,
then

e Wea o oocece
lim lim —~F = vge 3)

L—o00 A—o0o

exists in the mean and almost surely and is finite, independently of the boundary conditions.

This paper is organized as follows. In section 2 we define the RRN model based on the
classical laws of Ohm and Kirchoff. In section 3 we show how to formulate the model based
on a variational principle and in section 4 we use this principle to study the thermodynamic
limit of the dissipation per unit volume.

2. The model

We consider a RRN model with an Euclidean geoméifyand denote witlR,,, the resistors
on the links(n, n’) of Z¢, which are taken to be independent and identically distributed
random variables. The model is defined on a finite et Z¢. We fix a direction,
e.g. the direction 1, along which a potential difference is established betweé&d thé)-
dimensional hypersurfaces which are perpendicular to the direction 1. Equally valid RRN
can be obtained with current generators instead of potential generators [3].

Boundary conditions (BC) play a fundamental role in all statistical systems [7,8]. The
boundary of the finite region c Z¢ is defined a%A ={n e A:3n', ' € A, |n—n'| =
1}. The BC we use are imposed by fixing the potentialdgn such that

V, = nivg n={ny,...,ng} €A 4)
where vy is a real positive number. If we indicate the set of links containedAin
with Ly, = {(n,n’) C A : |n —n'| = 1}, we can assign o, the conductance field

C: L, — R, whereC,, are non-negative, independent and identically distributed random
variables, independent of the link orientation, i€,, = C,,, (n,n’) € L,. We denote
with (2, F, P) the probability space on which the variabl€s, live, and with E(-)

the expectation value respect to the measBre We use the notatio(C¥ ) = (C*),

k=12, ... (n,n) € L,, for the expectation value of thagh power of the variable€’,,,, .
The potential fieldV : A — R is related to the conductance fiefdby Ohm'’s law

Va = Vi) Cow = Lyw (n, n,) €Ly (5)

where I, is the current passing though the lik, n"). Denoting withA c A the set of
points of A on which the potential field/ is fixed to a valueV, Kirchoff's First Law is
given by

Lw= Y (Va=Vi)Cw=0  neA\A. (6)
(' eA:ln’—n|=1} {n'eA:|n'—n|=1}
Thus, by Ohm’s and Kirchoff's laws, on the sitess A\ A there is a well-defined potential
Z{n'eA:mun\:l} Vi Cuw
Z{n’eA:\nLnlzl} Con

Note that Kirchoff's and Ohm’s laws are relations valid for eagle 2. Proposition 2.1
will be useful in the following.

Proposition 2.1 (maximum principle).et V,, n € A the values of the fixed potential and
Vimax, Vmin itS maximum and mini_mum valuedmin < V, < Vimaxs 7 € A. Then, for each
® € 2, Vimin <V, < Vnax 1 € A\A.
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Proof. Let us show, for example, the inequality < Vmax. By equation (7), the potentials
V., n € A\ A, are given by a weighted averagelgf on the nearest-neighbour site€se A,
i.e. for everyw € Q

Vi < { /-|ma)f ) Vi neA\A, n €A. (8)
If there exi_sts a poini € A\A such thatV; > Viay then we would havevﬁ_> V,, for
everyn’ € A. On the other hand, repeatedly applying (8) we can find @ A such that
Vaz < V., hence the contradiction.

3. Variational principle

In this section we show that Kirchoff's law, (cf (6)), can be obtained by a variational
principle. In particular, the potential fieltf determined by Kirchoff's law minimize the
dissipation per unit volume by the Joule effect by the network in the region

Wa(C.V) 1

C,V = "= V,—Vy ZC,mf 9
wa(C, V) A A <,,,;LA( ) )

where V denotes a field of fixed values for the potential &rand the sum is taken over
all the links (n, n") in the regionAt. We introduce the set of the potential fields which
coincide withV on A, ®(A, V) = {¢ : ¢, = V,, n € A}, and thedissipation functional
or i P(A, V) > R

oaC.d) = D (@n—Pu)*Con. (10)
(n,n")eL

Definition 3.1.Given a fieldp € ®(A, V), the functionU¢ : A x [-1,1] — R is called
the variation of the fields in ®(A, V) if

(i) U=° = ¢,, for everyn € A,

(i) Us = V,, for everyn € A ande € [-1, 1],

(i) Uc € C®(A x [~1, 1]).

We denote withV(¢) the set of variations op in ®(A, V).

Definition 3.2.V € ®(A, V) is called a stationary point fap,(C, ¢) on ®(A, V) if the
functionp, (C, U¢) : [-1, 1] — R has a stationary point ia = 0 for everyU¢ € V(V).

We can now prove the main result of this section:

Theorem 3.1 (least dissipation principlélhe potential fieldV € ®(A, V) determined by
Kirchoff's law is a minimum point for the functionab, (C, ¢), i.e.

Wa(C, V)= min _}mc, }). (11)

{p:9n=V,, neA

Proof. We want to show that the potential field € ®(A, V) determined by Kirchoff's
law is both a stationary point and a minimum point for the dissipation functippet’, ¢).
The stationarity is proven by noting that for evdily € V(V), V € ®(A, V),

23 (¥ W-VCw)z, (12)
0

neAA 'EAin—n|=1}

d (C, U9
&(PA s

€=l

T We stress that notatiofr, n') € L should be intended as a sum over the number of links and not simply as a
sum over nearest-neighbour poimtindn’. The latter sum differs from the former by a factor of 2.
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having used the fact that, by definition 3.Z, = Uy /d€|.—o = O for everyn € A.
Then, by Kirchoff's law (6) and the arbitrariness of tdg, n € A\ A, consequence of the
arbitrariness of thé/< € V(V), definition 3.2 implies that/ € ®(A, V) is a stationary
point for ¢, (C, ¢).

To prove that the potential field € ®(A, V) is a minimum point, we need to show that
oa(C,U®) = @a(C, V), foreveryU€ € V(V) and every € [—1, 1]. PuttingU; = V,+Z¢
we obtain

PA(C,U) =g (C, V)22 Y (Vy = Vi) (Z5 — Z5)Cow

(n,n")eL

= ZZ Z (Vn - Vn/)Cnn’>Z;€1‘
neA {n’eA:ln’—n|=1}
Then, using Kirchoff's law (6), we gep,(C, U¢) — ¢ (C, V) > 0, for eachZg, i.e. for
everye € [—1, 1].

4. Thermodynamic limit

In this section, we study the thermodynamic limit of the dissipation defgjty|A|, as the
volume |A| of the regionA c Z¢ goes to infinity. We parametrize the regian c Z¢
with a rectangle of dimensions, ..., a; and then take the limit; — o0, i =1,...,d.
For notational simplicity we shall consider the case witk- 2, as the results are trivially
extendable to arbitrary. We parametrize the rectangle by a pair of integérsA), where
L is the number of links in the longitudinal direction addis the number of sites in the
transverse direction.
We denote the dissipation density in two dimensions fwith
WLA 1 2
LA - LA (H’;LA(Vn Vn’) Cnn’~ (13)
Let us establish the potential difference along the longitudinal direction. We shall consider
the case in which no boundary conditions are imposed along the longitudinal direytiem (
BC), and the case in which the boundary conditions are imposed following equation (4)
(closed BQ.
Let us note that, being the potential difference proportional to the longitudinal dimension,
the dissipation density can be written in terms of the total conduct@pgeof the network,
2
Indeed, the authors of [3] study the thermodynamic limit of the r.h.s. of (14).

4.1. Preliminary lemmas

In this section we apply the variational principle of section 3 to derive a few properties for
the dissipationW, 4. In particular, we show thaW,, is a subadditive and superadditive
sequence of random values, with respecftand A, depending on the BC. We refer the
reader to [3, 9, 10], for the definition of subadditivity and superadditivity sequences, while
the main theorems we use in this paper are reported in the appendix.

T It must be stressed that, even if the notation might be slightly misleading, the dissipation is a function of the
region A(L, A) of dimensions(L, A) and not only of the dimensiond, A). It would be more appropriate to
write Wz, 4y, but when not strictly necessary for the comprehension, we shall use the abbreviated form.
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In the following OBC and CBC denote the open and closed BC respectively, while #
both BC.

Lemma 4.1For everyw € Q, WPBC(w) < WEC(w).

Proof. By the least dissipation principle, theorem 3.1, the total dissipali@d@, V) is
obtained minimizing, for everw € , the functionalp(C, ¢) with respect to all test fields
¢, with the constraint thap, = V,, Vn € A. Since, by imposing more constraints ¢n
we restrict the space on which they can vary, we have that for everyQ the minimum
of ¢(C, ¢) on the reduced space will be greater or equal to the one on the space with less
constraints. Hence, the thesis follows by considering the closed BC as a greater number of
constraints with respect to the open BC.

The following properties of subadditivity and superadditivity ¥ 4 hold:

Lemma 4.2If (C) < oo,
(i) W}, is subadditive inL for every fixedA € N,
(i) WPEBC is superadditive imA for every fixedL € N,
(i) W<BC is subadditive inA for every fixedL € N,
with respect to a translation on the probability space.

Proof. As in the proof of lemma 4.1, the dissipation on a regiofL, A) is less or equal
to the dissipation on the same region on which we impose a greater number of constraints
on the test potentials.
To prove point (i), we note that ik (L, A) = A1(L1, A) |J A2(L2, A) with L = L1+ Lo,
then

# # #
Waw.a) S Waywoa T Wagwa.a

since to get the r.h.s. we need to impose the constraint that the potential of the sites
with longitudinal coordinatd.; be vgL1. Since the random variables are independent and
identically distributed we can introduce the translation operator in the longitudinal direction
7; ON WfA = WX(L,A)

# # # Ly
Wiistoa SWea+Wiaoy

from which the subadditivity of¥}’, with respect taL for fixed A € N. It is clear that this
relation is valid independently of the contraints, i.e. of the BC.

Point (iii) is proven in a similar way, imposing as a constraint the fact that the potential
on the sites of the adjacent boundaries of the regidpd., A1) and A5(L, A»), such that
A(L, A) = AY(L, A1) U AS(L, Ap) with A = A1 + Ay, are proportional to the longitudinal
coordinate.

Finally, to prove point (ii), we observe that the regiar{L, A) with open BC can be
obtained connecting with resistors the nearest-neighbour sites of the adjacent boundaries
of two regionsA’ (L, A1) and AS(L, A»), also with open BC. To do this, we must take
A(L, A) = A(L, A)) U AS(L, Ap) with A = A1+ A. On the other hand, connecting two
sites with a resistor implies passing from a conductatice O to a conductanc€ > 0. In
this passage the dissipation cannot diminish, i.e.

0BC 0BC OBC
WA’l(L,A) > WA’l(L,Al) + WA’Z(L,AZ)'
Introducing the translation operator in the transverse direatipwe can write
0BC OBC OBC _ _A
Wiaria, 2 Woa, + Wiy, o

from which the superadditivity¥ °€ with respect toA for fixed L € N.
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To complete the proof, we only need to observe that if the expectation vélués
finite, the expectation valueB (W, ,)/LA are also finite for every., A € N.
From lemmas 4.2 and A.1, we have the following

Lemma 4.3If (C) < o0
(i) fim_ 1E(W{"‘A) = inf EE(W{"‘A)
(i) lim_ —E(WLOEC) = sup E(WL OBC),

(iii) /Lan E(WLCABC) = mf—E( WEBS),

4.2. Convergence in the mean

In this section we prove the convergence in the mean (mean square convergence) [11] of
(1/LAYW; 4 asL — oo and A — oo. For closed BC we demonstrate the convergence
independently of the order of the limits dnand A. For open BC, the result depends on

the order of the limits. We shall divide the proof in a few preliminary propositions.

Proposition 4.1.If (C) < oo the limits
(WCBC) (WCBC) 2L2 CBC

(1) lim =inf =LA~
Ao AOBC 4 OBC

T, Wi EW;
(i) fllm B( — ) sup% = nggLOBc

- A

WCBC,OBC  E(WCBCOBC

(iii) I|m E( ):mf Wiy ) = 3e SBCOBC

L—oo L

L
exist and are finite, witlg9B¢ < gEBC for everyL, A e N.

Proof. We consider first the case of closed BC. Being the sequéh@8-E¢) bounded
from below by zero, by lemma 4.3 the limit

) EW CBC WCBC
tim EWVea?) _ e EOVED) B( ) = = v3L%5EC
A—00 A A A
exists finite for everyL. € N. For open BC, by lemma 4.1,
EWEES _ EWEE)
A T A
for every A € N, hence passing to the limi — oo, by lemma 4.3 the limit
) E WOBC E WOBC
jim ¢ ) =sup— LA~ ( ) = = v3L2gBC
A—o0 A A A

exists finite, withg?8¢ < gBC, for every L € N. Point (iii) is proven along similar lines
using the subadditivity i, of E(W,,), valid independently of the BC.

Proposition 4.2.If (C) < oo the limits
~CBC -CBC

. c —
() lim A —inf 4 = gCBC,
A—soo A A A
EOBC EOBC
(i) lim_ A —sup4 = gOBC
A A

(III) |Im L —CBC OBC |nfL —CBC OBC gCBC,OBC'

exist and are flnlte, W|thr°E‘C < cCBC.
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Proof. By lemma 4.2 and proposition 4.1, it is easily proven tAgf¢ and ¢Q5C are
subadditive and superadditive sequencegijirespectively. Then, by lemma A.1, being
¢$B€ bounded from below by zero, the limit

~CBC -C C

lim 4 = |nf
A—>oco A

= ECBC

exists finite. Moreover, by lemma 4.1 and proposition 425¢ < ¢$BC for every A € N.
Then, passing to the limit foA — oo, the limit
Z0BC coBC

lim -4 _sup
A—oco A A

EOBC

exists finite, withc®BC < ¢CBC. Point (iii) is similarly proven.

Proposition 4.3.If (C) < oo then

] OBC ] E WCBC
lim EWL™ _ lim ¥ (15)
A—o0 A—>o0 A

Proof. By lemma 4.1, it suffices to show that
. E(W CBC ) WOBC
lim EWED < lim ¥ (16)
A—o0 A—o0 A

To prove this inequality, we consider a network of dimensighsA) with closed BC, and
a network of dimension$L, A — 2) with open BC, as shown in figure 1.

By the least dissipation principle (cf theorem 3.5 = Wi, (C, V) is obtained
by minimizing the functional(C, ¢) with respect to all the field¢ that assume the values

vo, 2vp, - . ., Lvg on the boundaries parallel to the longitudinal direction. Denotind e
extremal field, we have
WEC= > (Va=Va)?Cun.

(n,n")ELAL,A)

V= L’U()
O
Vo 21}0 3’[)0 (L — 1)’U0
Vo 27J0 3’U0 (L — 1)’[}0

Figure 1. Comparison of the network of dimensions, A) with closed BC with the network
of dimensions(L, A — 2) with open BC.



7294 F Guerra and M Talevi

The extremal fieldv’ for W5, = WQBF , 5 (C, V') is, in general, not equal t¥, i.e. it
does not minimizeW 8¢, Thus we have
WERC= D> (V= Va)Con + > (Vi = Vi)*Co

(n,n")eL 1 a-2) (n.n)eLaw.n\Lar@,a-2

< ) (Vi=V)Cuw

(n,n")EL pr(1 A—2)

+ > (V, = n1v0)*Cow
{neA' (L,A=2),n'¢N'(L,A=2):|In—n'|=1}
+ Z (nlvo - né]_UO)ZCnn“
(n,n")EL AL aNA/(L.A-2)
from which
EWSBS  EWPES,)  EWY,) EWPen
< : + + a7
A A A A
where
2L
WEound — Ug Z C]E)ound (18)
k=1
is the dissipation due to the conductanC«?&“”d, k=1, ...,2L which lie on the longitudinal
boundaries of the network of dimensio(s, A) with closed BC and
Wiy = Wi+ Wik (19)

is the dissipation due to the transverse conductancds\f 4)\La/.4a—2 that do not lie

on the equipotential sides, which do not dissipate. The superscripts sup and inf indicate the
contributions of the superior and inferior part &L, A)\A'(L, A — 2). We indicate with
C;*PandC", k = 1,..., L—1these conductances, and Wit " andVv,"", k = 1,..., L-1,

the potentials on the sites on the two longitudinal boundaries of the network of dimensions
(L, A — 2) with open BC, excluding the sites that lie on the equipotential sides. Thus, we
have

L-1
inf inf inf
Wiupln _ vg Z(Vksupm _ kvo)ZC:umn ) (20)
k=1

Note that the transverse terfi]’, in general can depend both dnand A, while the
boundary termWfOund does not depend oA, so it does not contribute to the limit for
A — oo of (17). Thus, we only need to show that

. EW!
lim M —
A—o00
from which, since
BEWEaZs) _ BOWELS,)
A SA=2
i.e. equation (16).
To estimate the ternk(W}',), note that by the maximum principle (cf proposition 2.1),
we have 0< V"™ < L, for everyk < L, from which

0 (21)

(22)

VR — kvl < (L = Dvo (23)
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for everyk < L. Then, Wy < (L — 12211 3™ and, being the variables
identically distributed,

EW!,) < 2(L — 1)03(C). (24)

Since this estimate is uniform iA, we obtain (21) and thus the thesis.
We can sum up the preceding propositions in the following.

Theorem 4.11f (C) < oo, the limit

. E(WE°

im  Z¢ ) = v5c“BC (25)
L,A—oc0 LA

exist and is finite, independently of the order with which we take the limits, while

E(WPEC)
lim lim =LA 7 — 2z0BC
A—o0 L—o0
OBC
lim lim BWra™) _ = p2cCBC
L—00 A—>00 LA Yo
with ¢OBC  ¢CBC,

Proof. By propositions 4.1 and 4.2,

CBC,0BC
; : W) 2-CBC,0BC
lim lim = U58

L—00 A—o0 LA

E(W CBCOBC)

: : LA 2-CBC,0BC
lim lim = vgC

A—00 L—00 LA

so we only need to show thag©B8¢ = gCBC = ¢CBC. The first equality follows from
proposition 4.3, since

_cBC _ im (WCBC) | (WOBC) _ _osc
8L = A L

A—o00 A—>oo

for every L € N. The second equality from the fact that

CB

CBC ~CBC
F |nf LgCBC EW;, ) inf SA__ _ zCBC

LA A

inf
L.A

4.3. Almost sure convergence

In this section we prove the main results of this paper. We first show that, for closed BC, the
dissipation densityv,,/LA converges almost surely, &s A — oo, independently of the

order of the limits. This is done by exploiting general theorems on subadditive sequences
[9, 3], reported in the appendix. We also show that the almost sure convergence holds for
both open and closed BC if we ldt — oo beforeL — oo, i.e. we prove the independence

of the boundary conditions for a given order of the limits. The novelty of this second result
is that the different behaviour of the dissipation with open and closed BC is exploited to
prove the almost sure convergence, using classical theorems of probability theory, such as
Kolmogorov’s strong law of large numbers [11], instead of the general theorems of the
appendix.
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4.3.1. Independence of the order of the limits for closed BC.

Theorem 4.2For closed BC, the limit
CBC

W,
lim —LA — 3cCBC (26)
L,A—»oco LA

exists almost surely and is finite, independently of the order of the limits, where

. EWE°
v3cCBC = lim EWED. (27)
L,A—o0 LA
Proof. We must show that almost surely the limits
- . WEBC
(i) lim lim —EA = 25CBC
A—00 L—>00 A
CBC
(i) lim lim —LA — 2zCBC
L—>oco Ao LA

exist and are finite. By lemma 4.%/-5€ is subadditive inL for every fixedA, and inA for
every fixedL, with a translation as a measure-preserving transformation on the probability
space. Hence, by the theorems in the appendix and proposition 4.1, we get that the limits

CBC CBC
lim WLE =i E(WLE ) _ U2—CBC
= = UpCyu
L—-oco LA L LA
. WCBC ) E WCBC
jim WEA _ g EOVEAD) vaLg®c

A—oo LA A LA
exist almost surely and are finite. Then, by proposition 4.2, the limits
CBC

lim lim —LA = 2cCBC
A—o00 L—00

CBC
lim lim —L£4 — 25CBC

L—00 A—o0

also exist almost surely and are finite. The thesis follows from theorem 4.1.

4.3.2. Independence of the boundary conditions for a given order of the limits.

Theorem 4.3Independently of the BC, the limit

. . W
lim lim X4 = 2zCBC (28)
LA

L—o00 A—o0

exists almost surely and is finite, where

CBC
v3eCBC = lim lim M. (29)
L—00 A—00 LA

Proof. Let us consider an increasing sequence of integdrs such thatA, — oo,
p — oo. We fix our attention on a generic element of the sequesagesuch that
A = N,A,+r,, r, < A, Letus divide the network of transverse extensiprin N,
networks of extensiom, plus a network of extension,. Being WPEC a superadditive
sequence i for every fixedL € N, we have

rp

N,
WERC > 3 WEES ot WG o M (30)
k=1
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whereWOE‘C t®=D4 gk =1,..., N,, are independent and identically distributed random
vanables D|V|d|ng both S|des b)ﬂ —r, = NyA,, and lettingA — oo, or equivalently
N, — o0,

o OBC . 1 Yo, WPBC o (=D,
lim inf > |im —

A—00 A N,,—)oo N[, — Ap

Since the expectation vall{e/Ap)E(WEpr) is finite we can apply Kolmogorov's strong
law of large numbers [11] to state thB(NPEC) = 0, where

N°B°=:Iiminf WEn (@) E(WOBC)}
P A— A[)

Using the subadditivity of the measure, we obtain

WOBC(w) _ E(WPEO)

o0
\/OBC ) __ F —
P(,QNP >_P{I|mlorlf 2 i VpeN}_l

and, by proposition 4.1,

WoBC
P {Iiminf @) vSngSBC} =1

A—00
For closed BC we can use similar arguments using the subadditivity§f instead of the
superadditivity of WP2C, and we obtain

CBC( )
P {Iim sup—£4 2 vSng(L:BC} =1
A—o00 A
Then, by lemma 4.1 and proposition 4.3, which implg$C© = g98€ = g, , we find that
the limit

CBC,OBC(w)
Jim = = v5L%gL (31)
exists finite for everyo e Q\(WSECOBCMN“©5%), where we have introduced the

following sets of zero measure

WeBe
NEBC — Llimsu Po(@) 2123
sup A—>oop A 7 ok 8L
WCBC
Nit© = lim inf % ZngL}
W OBC
NOBC — llimsu @ 2725
sup = Aaoop A ol 8L
AOBC _ ]| WPRC(w) 2,92
= Inllorlf < vgl°gL

Since P(WSECOBC M N;FEOC) = 0, the limit (31) exist almost surely and is finite both
for open and closed BC. The thesis follows from theorem 4.1 and proposition 4.2.
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Appendix. Theorems on subadditive and superadditive sequences

Theorem A.1 (Kingman [9])Let {&,}, n € N, be a subadditive sequence such that
E(&,) > —An for some positive constamt. Then, the limit

£ = lim > (A1)

n—oo n

exist finite almost surely and in the mean aBds) = y, where

y = inf Z6n). (A2)

n n

Moreover, the limité can be represented as

. E¢A
g = lim &R (A3)
n—00 n
where A is thes-algebra of the events invariant under the measure-preserving transformation
on the probability space which defines the subadditive process. In particular, if A contains
only events of probability 0 or 1, thep= y.

The limit variable ¢ is degenerate only in particular cases. For example, it=
F,(n1,n2,...), wherenq, na, ... are independent and identically distributed variables, then
by the zero-one law the-algebra A is trivial anck = y [9]. Indeed, this is the case for
the problem at hand, where the sequefices given by the dissipation as a function of the
volume of the regionA and the variablegs, 1, ... are the dissipations associated to the
subvolumes ofA.

Actually, in the case that the transformation is a translation one can show directly that
& is degenerate, i.e. we have the followjng

Theorem A.2 (Bellisard et al [3])Let {¢,}, n € N, be a superadditive sequence with
measure-preserving translationon the probability space, such thBt&,) < An for some
positive constantA. Then, the limit

£ = lim 5 (A4)

n—oo n

exist finite almost surely and in the mean ane- y, where

y = supE(g”). (A5)

n

We also note the following lemma [9]:

Lemma Appendix .4.et {a,}, n € N be a numeric sequence. Then
. . a, . a, . . ..
() lim — =inf — if a, is subadditive,
n n

n—oo mn

.. . a a, . . .
(i) lim = =sup— if a, is superadditive.
n—oo n n N

1 The results obtained for superadditive sequences can be easily reformulated for subadditive sequences, and vice
versa.
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