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Abstract. We study a random resistors network model on a Euclidean geometryZd . We
formulate the model in terms of a variational principle and show that, under appropriate boundary
conditions, the thermodynamic limit of the dissipation per unit volume is finite almost surely
and in the mean. Moreover, we show that for a particular thermodynamic limit the result is also
independent of the boundary conditions.

1. Introduction

In this paper we study a model of random resistors networks (RRN) on a Euclidean geometry
Zd . RRN are examples of disordered statistical mechanical systems which have been widely
considered in the literature in the context of percolation theory [1], with different lattice
geometries and different probability distributions for the resistors [2–6].

The problem we address is the behaviour of the RRN model in the thermodynamic limit,
concentrating in particular on the role of the boundary conditions. We shall restrict ourselves
to the case in which the resistors are independent and identically distributed positive random
variables. We do not specify any distribution function but assume it to be smooth enough to
have a finite expectation value. The physical observable we consider is the dissipation per
unit volume, which is related to the total conductance of the network (cf (14)). We show
that, under appropriate boundary conditions (which we callclosed boundary conditions
(CBC) and will be specified in section 2), the thermodynamic limit of the dissipation is
finite, both in the mean and almost surely. More precisely, the main results of this paper
are summarized by the following theorem.

Theorem 1.1.If the conductances of the network have a finite expectation value〈C〉, then
the limit of the dissipation per unit volumeWCBC

LA /LA on a rectangular§ RRN of dimensions
(L, A),

lim
L,A→∞

WCBC
LA

LA
= v2

0c̄
CBC (1)

exists in the mean and almost surely and is finite, independently of the order of the limits
on L andA, wherev0 is a real positive number,

v2
0c̄

CBC = lim
L,A→∞

E(WCBC
LA )

LA
(2)

† E-mail address: guerra@roma1.infn.it
‡ E-mail address: talevi@roma1.infn.it
§ We consider the case ofd = 2, being the extension to the case of an arbitraryd trivial.
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and CBC denotes closed boundary conditions. Moreover, if we letA → ∞ beforeL → ∞,
then

lim
L→∞

lim
A→∞

WLA

LA
= v2

0c̄
CBC (3)

exists in the mean and almost surely and is finite, independently of the boundary conditions.

This paper is organized as follows. In section 2 we define the RRN model based on the
classical laws of Ohm and Kirchoff. In section 3 we show how to formulate the model based
on a variational principle and in section 4 we use this principle to study the thermodynamic
limit of the dissipation per unit volume.

2. The model

We consider a RRN model with an Euclidean geometryZd and denote withRnn′ the resistors
on the links(n, n′) of Zd , which are taken to be independent and identically distributed
random variables. The model is defined on a finite set3 ⊂ Zd . We fix a direction,
e.g. the direction 1, along which a potential difference is established between the(d − 1)-
dimensional hypersurfaces which are perpendicular to the direction 1. Equally valid RRN
can be obtained with current generators instead of potential generators [3].

Boundary conditions (BC) play a fundamental role in all statistical systems [7, 8]. The
boundary of the finite region3 ⊂ Zd is defined as∂3 = {n ∈ 3 : ∃n′, n′ 6∈ 3, |n− n′| =
1}. The BC we use are imposed by fixing the potential on∂3 such that

Vn = n1v0 n = {n1, . . . , nd} ∈ ∂3 (4)

where v0 is a real positive number. If we indicate the set of links contained in3

with L3 = {(n, n′) ⊂ 3 : |n − n′| = 1}, we can assign onL3 the conductance field
C : L3 → R, whereCnn′ are non-negative, independent and identically distributed random
variables, independent of the link orientation, i.e.Cnn′ = Cn′n, (n, n′) ∈ L3. We denote
with (�, F , P ) the probability space on which the variablesCnn′ live, and with E(·)
the expectation value respect to the measureP . We use the notationE(Ck

nn′) = 〈Ck〉,
k = 1, 2, . . ., (n, n′) ∈ L3, for the expectation value of thekth power of the variablesCnn′ .

The potential fieldV : 3 → R is related to the conductance fieldC by Ohm’s law

(Vn − Vn′)Cnn′ = Inn′ (n, n′) ∈ L3 (5)

whereInn′ is the current passing though the link(n, n′). Denoting with3̄ ⊂ 3 the set of
points of 3 on which the potential fieldV is fixed to a valueV̄ , Kirchoff’s First Law is
given by ∑

{n′∈3:|n′−n|=1}
Inn′ =

∑
{n′∈3:|n′−n|=1}

(Vn − Vn′)Cnn′ = 0 n ∈ 3\3̄. (6)

Thus, by Ohm’s and Kirchoff’s laws, on the sitesn ∈ 3\3̄ there is a well-defined potential

Vn =
∑

{n′∈3:|n′−n|=1} Vn′Cnn′∑
{n′∈3:|n′−n|=1} Cnn′

n ∈ 3\3̄. (7)

Note that Kirchoff’s and Ohm’s laws are relations valid for eachω ∈ �. Proposition 2.1
will be useful in the following.

Proposition 2.1 (maximum principle).Let V̄n, n ∈ 3̄ the values of the fixed potential and
Vmax, Vmin its maximum and minimum values,Vmin 6 V̄n 6 Vmax, n ∈ 3̄. Then, for each
ω ∈ �, Vmin 6 Vn 6 Vmax, n ∈ 3\3̄.
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Proof. Let us show, for example, the inequalityVn 6 Vmax. By equation (7), the potentials
Vn, n ∈ 3\3̄, are given by a weighted average ofVn′ on the nearest-neighbour sitesn′ ∈ 3,
i.e. for everyω ∈ �

Vn 6 max
{n′:|n′−n|=1}

Vn′ n ∈ 3\3̄, n′ ∈ 3. (8)

If there exists a point̄n ∈ 3\3̄ such thatVn̄ > Vmax, then we would haveVn̄ > V̄n′ , for
everyn′ ∈ 3̄. On the other hand, repeatedly applying (8) we can find an′ ∈ 3̄ such that
Vn̄ 6 V̄n′ , hence the contradiction.

3. Variational principle

In this section we show that Kirchoff’s law, (cf (6)), can be obtained by a variational
principle. In particular, the potential fieldV determined by Kirchoff’s law minimize the
dissipation per unit volume by the Joule effect by the network in the region3

w3(C, V̄ ) = W3(C, V̄ )

|3| = 1

|3|
∑

(n,n′)∈L3

(Vn − Vn′)2Cnn′ (9)

whereV̄ denotes a field of fixed values for the potential on3̄ and the sum is taken over
all the links (n, n′) in the region3†. We introduce the set of the potential fields which
coincide with V̄ on 3̄, 8(3̄, V̄ ) = {φ : φn = V̄n, n ∈ 3̄}, and thedissipation functional
ϕ3 : 8(3̄, V̄ ) → R

ϕ3(C, φ) =
∑

(n,n′)∈L3

(φn − φn′)2Cnn′ . (10)

Definition 3.1.Given a fieldφ ∈ 8(3̄, V̄ ), the functionUε
n : 3 × [−1, 1] → R is called

the variation of the fieldφ in 8(3̄, V̄ ) if
(i) Uε=0

n = φn, for everyn ∈ 3,
(ii) Uε

n = V̄n, for everyn ∈ 3̄ andε ∈ [−1, 1],
(iii) Uε ∈ C∞(3 × [−1, 1]).
We denote withV(φ) the set of variations ofφ in 8(3̄, V̄ ).

Definition 3.2.V ∈ 8(3̄, V̄ ) is called a stationary point forϕ3(C, φ) on 8(3̄, V̄ ) if the
function ϕ3(C, Uε) : [−1, 1] → R has a stationary point inε = 0 for everyUε ∈ V(V ).

We can now prove the main result of this section:

Theorem 3.1 (least dissipation principle).The potential fieldV ∈ 8(3̄, V̄ ) determined by
Kirchoff’s law is a minimum point for the functionalϕ3(C, φ), i.e.

W3(C, V̄ ) = min
{φ:φn=V̄n, n∈3̄}

ϕ3(C, φ). (11)

Proof. We want to show that the potential fieldV ∈ 8(3̄, V̄ ) determined by Kirchoff’s
law is both a stationary point and a minimum point for the dissipation functionalϕ3(C, φ).

The stationarity is proven by noting that for everyUε ∈ V(V ), V ∈ 8(3̄, V̄ ),

d

dε
ϕ3(C, Uε)

∣∣∣∣
ε=0

= 2
∑

n∈3\3̄

( ∑
{n′∈3:|n′−n|=1}

(Vn − Vn′)Cnn′
)
Zn (12)

† We stress that notation(n, n′) ∈ L3 should be intended as a sum over the number of links and not simply as a
sum over nearest-neighbour pointsn andn′. The latter sum differs from the former by a factor of 2.
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having used the fact that, by definition 3.1,Zn = ∂Uε
n/∂ε|ε=0 = 0 for every n ∈ 3̄.

Then, by Kirchoff’s law (6) and the arbitrariness of theZn, n ∈ 3\3̄, consequence of the
arbitrariness of theUε ∈ V(V ), definition 3.2 implies thatV ∈ 8(3̄, V̄ ) is a stationary
point for ϕ3(C, φ).

To prove that the potential fieldV ∈ 8(3̄, V̄ ) is a minimum point, we need to show that
ϕ3(C, Uε) > ϕ3(C, V ), for everyUε ∈ V(V ) and everyε ∈ [−1, 1]. PuttingUε

n = Vn+Zε
n

we obtain

ϕ3(C, Uε) − ϕ3(C, V ) > 2
∑

(n,n′)∈L3

(Vn − Vn′)(Zε
n − Zε

n′)Cnn′

= 2
∑
n∈3

( ∑
{n′∈3:|n′−n|=1}

(Vn − Vn′)Cnn′
)
Zε

n.

Then, using Kirchoff’s law (6), we getϕ3(C, Uε) − ϕ3(C, V ) > 0, for eachZε
n, i.e. for

everyε ∈ [−1, 1].

4. Thermodynamic limit

In this section, we study the thermodynamic limit of the dissipation densityW3/|3|, as the
volume |3| of the region3 ⊂ Zd goes to infinity. We parametrize the region3 ⊂ Zd

with a rectangle of dimensionsa1, . . . , ad and then take the limitai → ∞, i = 1, . . . , d.
For notational simplicity we shall consider the case withd = 2, as the results are trivially
extendable to arbitraryd. We parametrize the rectangle by a pair of integers(L, A), where
L is the number of links in the longitudinal direction andA is the number of sites in the
transverse direction.

We denote the dissipation density in two dimensions with†
WLA

LA
= 1

LA

∑
(n,n′)∈L3

(Vn − Vn′)2Cnn′ . (13)

Let us establish the potential difference along the longitudinal direction. We shall consider
the case in which no boundary conditions are imposed along the longitudinal direction (open
BC), and the case in which the boundary conditions are imposed following equation (4)
(closed BC).

Let us note that, being the potential difference proportional to the longitudinal dimension,
the dissipation density can be written in terms of the total conductanceCLA of the network,

WLA

LA
= V 2

LCLA

LA
= v2

0
L

A
CLA. (14)

Indeed, the authors of [3] study the thermodynamic limit of the r.h.s. of (14).

4.1. Preliminary lemmas

In this section we apply the variational principle of section 3 to derive a few properties for
the dissipationWLA. In particular, we show thatWLA is a subadditive and superadditive
sequence of random values, with respect toL and A, depending on the BC. We refer the
reader to [3, 9, 10], for the definition of subadditivity and superadditivity sequences, while
the main theorems we use in this paper are reported in the appendix.

† It must be stressed that, even if the notation might be slightly misleading, the dissipation is a function of the
region 3(L, A) of dimensions(L, A) and not only of the dimensions(L, A). It would be more appropriate to
write W3(L,A), but when not strictly necessary for the comprehension, we shall use the abbreviated form.
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In the following OBC and CBC denote the open and closed BC respectively, while #
both BC.

Lemma 4.1.For everyω ∈ �, WOBC
LA (ω) 6 WCBC

LA (ω).

Proof. By the least dissipation principle, theorem 3.1, the total dissipationW(C, V̄ ) is
obtained minimizing, for everyω ∈ �, the functionalϕ(C, φ) with respect to all test fields
φ, with the constraint thatφn = V̄n, ∀n ∈ 3̄. Since, by imposing more constraints onφ,
we restrict the space on which they can vary, we have that for everyω ∈ � the minimum
of ϕ(C, φ) on the reduced space will be greater or equal to the one on the space with less
constraints. Hence, the thesis follows by considering the closed BC as a greater number of
constraints with respect to the open BC.

The following properties of subadditivity and superadditivity onWLA hold:

Lemma 4.2.If 〈C〉 < ∞,
(i) W #

LA is subadditive inL for every fixedA ∈ N,
(ii) WOBC

LA is superadditive inA for every fixedL ∈ N,
(iii) WCBC

LA is subadditive inA for every fixedL ∈ N,
with respect to a translation on the probability space.

Proof. As in the proof of lemma 4.1, the dissipation on a region3(L, A) is less or equal
to the dissipation on the same region on which we impose a greater number of constraints
on the test potentials.

To prove point (i), we note that if3(L, A) = 31(L1, A)
⋃

32(L2, A) with L = L1+L2,
then

W #
3(L,A) 6 W #

31(L1,A) + W #
32(L2,A)

since to get the r.h.s. we need to impose the constraint that the potential of the sites
with longitudinal coordinateL1 be v0L1. Since the random variables are independent and
identically distributed we can introduce the translation operator in the longitudinal direction
τl on W #

LA ≡ W #
3(L,A)

W #
L1+L2,A

6 W #
L1A

+ W #
L2A

◦ τ
L1
l

from which the subadditivity ofW #
LA with respect toL for fixed A ∈ N. It is clear that this

relation is valid independently of the contraints, i.e. of the BC.
Point (iii) is proven in a similar way, imposing as a constraint the fact that the potential

on the sites of the adjacent boundaries of the regions3′
1(L, A1) and3′

2(L, A2), such that
3(L, A) = 3′

1(L, A1)
⋃

3′
2(L, A2) with A = A1 +A2, are proportional to the longitudinal

coordinate.
Finally, to prove point (ii), we observe that the region3(L, A) with open BC can be

obtained connecting with resistors the nearest-neighbour sites of the adjacent boundaries
of two regions3′

1(L, A1) and 3′
2(L, A2), also with open BC. To do this, we must take

3(L, A) = 3′
1(L, A1)

⋃
3′

2(L, A2) with A = A1 +A2. On the other hand, connecting two
sites with a resistor implies passing from a conductanceC = 0 to a conductanceC > 0. In
this passage the dissipation cannot diminish, i.e.

WOBC
3′

1(L,A) > WOBC
3′

1(L,A1)
+ WOBC

3′
2(L,A2)

.

Introducing the translation operator in the transverse directionτt , we can write

WOBC
L,A1+A2

> WOBC
LA1

+ WOBC
LA2

◦ τA1
t .

from which the superadditivityWOBC
LA with respect toA for fixed L ∈ N.
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To complete the proof, we only need to observe that if the expectation value〈C〉 is
finite, the expectation valuesE(WLA)/LA are also finite for everyL, A ∈ N.

From lemmas 4.2 and A.1, we have the following

Lemma 4.3.If 〈C〉 < ∞
(i) lim

L→∞
1

L
E(W #

LA) = inf
L

1

L
E(W #

LA),

(ii) lim
A→∞

1

A
E(WOBC

LA ) = sup
A

1

A
E(WOBC

LA ),

(iii) lim
A→∞

1

A
E(WCBC

LA ) = inf
A

1

A
E(WCBC

LA ).

4.2. Convergence in the mean

In this section we prove the convergence in the mean (mean square convergence) [11] of
(1/LA)WLA as L → ∞ and A → ∞. For closed BC we demonstrate the convergence
independently of the order of the limits onL andA. For open BC, the result depends on
the order of the limits. We shall divide the proof in a few preliminary propositions.

Proposition 4.1.If 〈C〉 < ∞ the limits

(I) lim
A→∞

E(WCBC
LA )

A
= inf

A

E(WCBC
LA )

A
≡ v2

0L
2ḡCBC

L

(ii) lim
A→∞

E(WOBC
LA )

A
= sup

A

E(WOBC
LA )

A
≡ v2

0L
2ḡOBC

L

(iii) lim
L→∞

E(W
CBC,OBC
LA )

L
= inf

L

E(W
CBC,OBC
LA )

L
≡ v2

0c̄
CBC,OBC
A

exist and are finite, with̄gOBC
L 6 ḡCBC

L , for everyL, A ∈ N.

Proof. We consider first the case of closed BC. Being the sequenceE(WCBC
LA ) bounded

from below by zero, by lemma 4.3 the limit

lim
A→∞

E(WCBC
LA )

A
= inf

A

E(WCBC
LA )

A
≡ v2

0L
2ḡCBC

L

exists finite for everyL ∈ N. For open BC, by lemma 4.1,

E(WOBC
LA )

A
6 E(WCBC

LA )

A

for everyA ∈ N, hence passing to the limitA → ∞, by lemma 4.3 the limit

lim
A→∞

E(WOBC
LA )

A
= sup

A

E(WOBC
LA )

A
≡ v2

0L
2ḡOBC

L

exists finite, withḡOBC
L 6 ḡCBC

L , for everyL ∈ N. Point (iii) is proven along similar lines
using the subadditivity inL of E(WLA), valid independently of the BC.

Proposition 4.2.If 〈C〉 < ∞ the limits

(I) lim
A→∞

c̄CBC
A

A
= inf

A

c̄CBC
A

A
≡ c̄CBC,

(ii) lim
A→∞

c̄OBC
A

A
= sup

A

c̄OBC
A

A
≡ c̄OBC,

(iii) lim
L→∞

Lḡ
CBC,OBC
L = inf

L
Lḡ

CBC,OBC
L ≡ ḡCBC,OBC,

exist and are finite, with̄cOBC 6 c̄CBC.
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Proof. By lemma 4.2 and proposition 4.1, it is easily proven thatc̄CBC
A and c̄OBC

A are
subadditive and superadditive sequences inA, respectively. Then, by lemma A.1, being
c̄CBC
A bounded from below by zero, the limit

lim
A→∞

c̄CBC
A

A
= inf

A

c̄CBC
A

A
≡ c̄CBC

exists finite. Moreover, by lemma 4.1 and proposition 4.1,c̄OBC
A 6 c̄CBC

A for everyA ∈ N.
Then, passing to the limit forA → ∞, the limit

lim
A→∞

c̄OBC
A

A
= sup

A

c̄OBC
A

A
≡ c̄OBC

exists finite, withc̄OBC 6 c̄CBC. Point (iii) is similarly proven.

Proposition 4.3.If 〈C〉 < ∞ then

lim
A→∞

E(WOBC
LA )

A
= lim

A→∞
E(WCBC

LA )

A
. (15)

Proof. By lemma 4.1, it suffices to show that

lim
A→∞

E(WCBC
LA )

A
6 lim

A→∞
E(WOBC

LA )

A
. (16)

To prove this inequality, we consider a network of dimensions(L, A) with closed BC, and
a network of dimensions(L, A − 2) with open BC, as shown in figure 1.

By the least dissipation principle (cf theorem 3.1),WCBC
LA ≡ WCBC

3(L,A)(C, V̄ ) is obtained
by minimizing the functionalϕ(C, φ) with respect to all the fieldsφ that assume the values
v0, 2v0, . . . , Lv0 on the boundaries parallel to the longitudinal direction. Denoting byV the
extremal field, we have

WCBC
LA =

∑
(n,n′)∈L3(L,A)

(Vn − Vn′)2Cnn′ .

Figure 1. Comparison of the network of dimensions(L, A) with closed BC with the network
of dimensions(L, A − 2) with open BC.
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The extremal fieldV ′ for WOBC
L,A−2 ≡ WOBC

3′(L,A−2)(C, V̄ ′) is, in general, not equal toV , i.e. it
does not minimizeWCBC

LA . Thus we have

WCBC
LA =

∑
(n,n′)∈L3′(L,A−2)

(Vn − Vn′)2Cnn′ +
∑

(n,n′)∈L3(L,A)\L3′(L,A−2)

(Vn − Vn′)2Cnn′

6
∑

(n,n′)∈L3′(L,A−2)

(V ′
n − V ′

n′)
2Cnn′

+
∑

{n∈3′(L,A−2),n′ 6∈3′(L,A−2):|n−n′|=1}
(V ′

n − n′
1v0)

2Cnn′

+
∑

(n,n′)∈L3(L,A)\3′(L,A−2)

(n1v0 − n′
1v0)

2Cnn′ .

from which

E(WCBC
LA )

A
6

E(WOBC
L,A−2)

A
+ E(W tr

LA)

A
+ E(W bound

L )

A
(17)

where

W bound
L = v2

0

2L∑
k=1

Cbound
k (18)

is the dissipation due to the conductancesCbound
k , k = 1, . . . , 2L which lie on the longitudinal

boundaries of the network of dimensions(L, A) with closed BC and

W tr
LA = W

sup
LA + W inf

LA (19)

is the dissipation due to the transverse conductances ofL3(L,A)\L3′(L,A−2) that do not lie
on the equipotential sides, which do not dissipate. The superscripts sup and inf indicate the
contributions of the superior and inferior part of3(L, A)\3′(L, A − 2). We indicate with
C

sup
k andC inf

k , k = 1, . . . , L−1 these conductances, and withV
sup
k andV inf

k , k = 1, . . . , L−1,
the potentials on the sites on the two longitudinal boundaries of the network of dimensions
(L, A − 2) with open BC, excluding the sites that lie on the equipotential sides. Thus, we
have

W
sup,inf
L = v2

0

L−1∑
k=1

(V
sup,inf
k − kv0)

2C
sup,inf
k . (20)

Note that the transverse termW tr
LA in general can depend both onL and A, while the

boundary termW bound
L does not depend onA, so it does not contribute to the limit for

A → ∞ of (17). Thus, we only need to show that

lim
A→∞

E(W tr
LA)

A
= 0 (21)

from which, since

E(WOBC
L,A−2)

A
6

E(WOBC
L,A−2)

A − 2
(22)

i.e. equation (16).
To estimate the termE(W tr

LA), note that by the maximum principle (cf proposition 2.1),
we have 06 V

sup,inf
k 6 Lv0, for everyk < L, from which

|V sup,inf
k − kv0| 6 (L − 1)v0 (23)
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for every k < L. Then, W
sup,inf
LA 6 (L − 1)2v2

0

∑L−1
k=1 C

sup,inf
k and, being the variables

identically distributed,

E(W tr
LA) 6 2(L − 1)3v2

0〈C〉. (24)

Since this estimate is uniform inA, we obtain (21) and thus the thesis.
We can sum up the preceding propositions in the following.

Theorem 4.1.If 〈C〉 < ∞, the limit

lim
L,A→∞

E(WCBC
LA )

LA
= v2

0c̄
CBC (25)

exist and is finite, independently of the order with which we take the limits, while

lim
A→∞

lim
L→∞

E(WOBC
LA )

LA
= v2

0c̄
OBC

lim
L→∞

lim
A→∞

E(WOBC
LA )

LA
= v2

0c̄
CBC

with c̄OBC 6 c̄CBC.

Proof. By propositions 4.1 and 4.2,

lim
L→∞

lim
A→∞

E(W
CBC,OBC
LA )

LA
= v2

0ḡ
CBC,OBC

lim
A→∞

lim
L→∞

E(W
CBC,OBC
LA )

LA
= v2

0c̄
CBC,OBC

so we only need to show that̄gOBC = ḡCBC = c̄CBC. The first equality follows from
proposition 4.3, since

ḡCBC
L = lim

A→∞
E(WCBC

LA )

A
= lim

A→∞
E(WOBC

LA )

A
= ḡOBC

L

for everyL ∈ N. The second equality from the fact that

ḡCBC = inf
L

LḡCBC
L = inf

L,A

E(WCBC
LA )

LA
= inf

A

c̄CBC
A

A
= c̄CBC.

4.3. Almost sure convergence

In this section we prove the main results of this paper. We first show that, for closed BC, the
dissipation densityWLA/LA converges almost surely, asL, A → ∞, independently of the
order of the limits. This is done by exploiting general theorems on subadditive sequences
[9, 3], reported in the appendix. We also show that the almost sure convergence holds for
both open and closed BC if we letA → ∞ beforeL → ∞, i.e. we prove the independence
of the boundary conditions for a given order of the limits. The novelty of this second result
is that the different behaviour of the dissipation with open and closed BC is exploited to
prove the almost sure convergence, using classical theorems of probability theory, such as
Kolmogorov’s strong law of large numbers [11], instead of the general theorems of the
appendix.



7296 F Guerra and M Talevi

4.3.1. Independence of the order of the limits for closed BC.

Theorem 4.2.For closed BC, the limit

lim
L,A→∞

WCBC
LA

LA
= v2

0c̄
CBC (26)

exists almost surely and is finite, independently of the order of the limits, where

v2
0c̄

CBC = lim
L,A→∞

E(WCBC
LA )

LA
. (27)

Proof. We must show that almost surely the limits

(i) lim
A→∞

lim
L→∞

WCBC
LA

LA
= v2

0c̄
CBC,

(ii) lim
L→∞

lim
A→∞

WCBC
LA

LA
= v2

0c̄
CBC,

exist and are finite. By lemma 4.2,WCBC
LA is subadditive inL for every fixedA, and inA for

every fixedL, with a translation as a measure-preserving transformation on the probability
space. Hence, by the theorems in the appendix and proposition 4.1, we get that the limits

lim
L→∞

WCBC
LA

LA
= inf

L

E(WCBC
LA )

LA
= v2

0c̄
CBC
A

lim
A→∞

WCBC
LA

LA
= inf

A

E(WCBC
LA )

LA
= v2

0LḡCBC
L

exist almost surely and are finite. Then, by proposition 4.2, the limits

lim
A→∞

lim
L→∞

WCBC
LA

LA
= v2

0c̄
CBC

lim
L→∞

lim
A→∞

WCBC
LA

LA
= v2

0ḡ
CBC

also exist almost surely and are finite. The thesis follows from theorem 4.1.

4.3.2. Independence of the boundary conditions for a given order of the limits.

Theorem 4.3.Independently of the BC, the limit

lim
L→∞

lim
A→∞

WLA

LA
= v2

0c̄
CBC (28)

exists almost surely and is finite, where

v2
0c̄

CBC = lim
L→∞

lim
A→∞

E(WCBC
LA )

LA
. (29)

Proof. Let us consider an increasing sequence of integers{Ap} such thatAp → ∞,
p → ∞. We fix our attention on a generic element of the sequenceAp such that
A = NpAp + rp, rp < Ap. Let us divide the network of transverse extensionA in Np

networks of extensionAp plus a network of extensionrp. Being WOBC
LA a superadditive

sequence inA for every fixedL ∈ N, we have

WOBC
LA >

Np∑
k=1

WOBC
LAp

◦ τ (k−1)Ap + WOBC
Lrp

◦ τNAp (30)
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whereWOBC
LAp

◦ τ (k−1)Ap , k = 1, . . . , Np, are independent and identically distributed random
variables. Dividing both sides byA − rp = NpAp, and lettingA → ∞, or equivalently
Np → ∞,

lim inf
A→∞

WOBC
LA

A
> lim

Np→∞
1

Np

Np∑
k=1

WOBC
LAp

◦ τ (k−1)Ap

Ap

.

Since the expectation value(1/Ap)E(WOBC
LAp

) is finite we can apply Kolmogorov’s strong

law of large numbers [11] to state thatP (N OBC
p ) = 0, where

N OBC
p =

{
lim inf
A→∞

WOBC
LA (ω)

A
<

E(WOBC
LAp

)

Ap

}
.

Using the subadditivity of the measure, we obtain

P

( ∞⋂
p=1

N̄ OBC
p

)
= P

{
lim inf
A→∞

WOBC
LA (ω)

A
>

E(WOBC
LAp

)

Ap

, ∀p ∈ N

}
= 1

and, by proposition 4.1,

P

{
lim inf
A→∞

WOBC
LA (ω)

A
> v2

0L
2ḡOBC

L

}
= 1.

For closed BC we can use similar arguments using the subadditivity ofWCBC
LA instead of the

superadditivity ofWOBC
LA , and we obtain

P

{
lim sup
A→∞

WCBC
LA (ω)

A
6 v2

0L
2ḡCBC

L

}
= 1.

Then, by lemma 4.1 and proposition 4.3, which impliesḡCBC
L = ḡOBC

L ≡ ḡL, we find that
the limit

lim
A→∞

W
CBC,OBC
LA (ω)

A
= v2

0L
2ḡL (31)

exists finite for everyω ∈ �\(N CBC,OBC
sup

⋂ N CBC,OBC
inf ), where we have introduced the

following sets of zero measure

N CBC
sup =

{
lim sup
A→∞

WCBC
LA (ω)

A
> v2

0L
2ḡL

}
N CBC

inf =
{

lim inf
A→∞

WCBC
LA (ω)

A
< v2

0L
2ḡL

}
N OBC

sup =
{

lim sup
A→∞

WOBC
LA (ω)

A
> v2

0L
2ḡL

}
N OBC

inf =
{

lim inf
A→∞

WOBC
LA (ω)

A
< v2

0L
2ḡL

}
.

SinceP (N CBC,OBC
sup

⋂ N CBC,OBC
inf ) = 0, the limit (31) exist almost surely and is finite both

for open and closed BC. The thesis follows from theorem 4.1 and proposition 4.2.
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Appendix. Theorems on subadditive and superadditive sequences

Theorem A.1 (Kingman [9]).Let {ξn}, n ∈ N, be a subadditive sequence such that
E(ξn) > −An for some positive constantA. Then, the limit

ξ = lim
n→∞

ξn

n
(A1)

exist finite almost surely and in the mean andE(ξ) = γ , where

γ = inf
n

E(ξn)

n
. (A2)

Moreover, the limitξ can be represented as

ξ = lim
n→∞

E(ξn|A)

n
(A3)

where A is theσ -algebra of the events invariant under the measure-preserving transformation
on the probability space which defines the subadditive process. In particular, if A contains
only events of probability 0 or 1, thenξ = γ .

The limit variable ξ is degenerate only in particular cases. For example, ifξn =
Fn(η1, η2, . . .), whereη1, η2, . . . are independent and identically distributed variables, then
by the zero-one law theσ -algebra A is trivial andξ = γ [9]. Indeed, this is the case for
the problem at hand, where the sequenceξn is given by the dissipation as a function of the
volume of the region3 and the variablesη1, η2, . . . are the dissipations associated to the
subvolumes of3.

Actually, in the case that the transformation is a translation one can show directly that
ξ is degenerate, i.e. we have the following†.

Theorem A.2 (Bellisard et al [3]).Let {ξn}, n ∈ N, be a superadditive sequence with
measure-preserving translationτ on the probability space, such thatE(ξn) 6 An for some
positive constantA. Then, the limit

ξ = lim
n→∞

ξn

n
(A4)

exist finite almost surely and in the mean andξ = γ , where

γ = sup
n

E(ξn)

n
. (A5)

We also note the following lemma [9]:

Lemma Appendix .4.Let {an}, n ∈ N be a numeric sequence. Then

(i) lim
n→∞

an

n
= inf

n

an

n
if an is subadditive,

(ii) lim
n→∞

an

n
= sup

n

an

n
if an is superadditive.

† The results obtained for superadditive sequences can be easily reformulated for subadditive sequences, and vice
versa.
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